Abstract

SummaryHeavily damped quadratic eigenvalue problem (QEP) is a special type of QEPs. It has a large gap between small and large eigenvalues in absolute value. One common way for solving QEP is to linearize the original problem via linearizations. Previous work on the accuracy of eigenpairs of not heavily damped QEP focuses on analyzing the backward error of eigenpairs relative to linearizations. The objective of this paper is to explain why different linearizations lead to different errors when computing small and large eigenpairs. To obtain this goal, we bound the backward error of eigenpairs relative to the linearization methods. Using these bounds, we build upper bounds of growth factors for the backward error. We present results of numerical experiments that support the predictions of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.