Abstract

This paper shows the nonlinear stochastic Feynman–Kac formula holds under quadratic growth. For this, we initiate the study of backward doubly stochastic differential equations (BDSDEs, for short) with quadratic growth. The existence, uniqueness, and comparison theorem for one-dimensional BDSDEs are proved when the generator f(t,Y,Z) grows in Z quadratically and the terminal value is bounded, by introducing innovative approaches. Furthermore, in this framework, we utilize BDSDEs to provide a probabilistic representation of solutions to semilinear stochastic partial differential equations (SPDEs, for short) in Sobolev spaces, and use it to prove the existence and uniqueness of such SPDEs, thereby extending the nonlinear stochastic Feynman–Kac formula for linear growth introduced by Pardoux and Peng (1994).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.