Abstract
We deal with multidimensional backward doubly stochastic differential equations (BDSDEs) with a superlinear growth generator and a square integrable terminal datum. We introduce new local conditions on the generator and then show that they ensure the existence and uniqueness as well as the stability of solutions. Our work goes beyond the previous results on the subject. Although we are focused on multidimensional case, the uniqueness result we establish is new in one-dimensional too. As an application, we establish the existence and uniqueness of probabilistic solutions to some semilinear stochastic partial differential equations (SPDEs) with superlinear growth gernerator. By probabilistic solution, we mean a solution which is representable throughout a BDSDEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.