Abstract

We consider a Hamiltonian decomposition problem of partitioning a regular graph into edge-disjoint Hamiltonian cycles. It is known that verifying vertex non-adjacency in the 1-skeleton of the symmetric and asymmetric traveling salesperson polytopes is an NP-complete problem. On the other hand, a suffcient condition for two vertices to be non-adjacent can be formulated as a combinatorial problem of finding a Hamiltonian decomposition of a 4-regular multigraph. We present two backtracking algorithms for verifying vertex non-adjacency in the 1-skeleton of the traveling salesperson polytope and constructing a Hamiltonian decomposition: an algorithm based on a simple path extension and an algorithm based on the chain edge fixing procedure. Based on the results of the computational experiments for undirected multigraphs, both backtracking algorithms lost to the known heuristic general variable neighborhood search algorithm. However, for directed multigraphs, the algorithm based on chain fixing of edges showed comparable results with heuristics on instances with existing solutions, and better results on instances of the problem where the Hamiltonian decomposition does not exist.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.