Abstract

A command filtered backstepping approach is presented that uses adaptive function approximation to control unmanned air vehicles. The controller is designed using three feedback loops. The command inputs to the airspeed and flight-path angle controller are x c , γ c , V c and the bounded first derivatives of these signals. That loop generates comand inputs μ c , α c for a wind-axis angle loop. The sideslip angle command β c is always zero. The wind-axis angle loop generates rate commands P c , Q c , R c for an inner loop that generates surface position commands. The control approach includes adaptive approximation of the aerodynamic force and moment coefficient functions. The approach maintains the stability (in the sense of Lyapunov) of the adaptive function approximation process in the presence of magnitude, rate, and bandwidth limitations on the intermediate states and the surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call