Abstract

Hydraulic servo system plays an important role in industrial fields due to the advantages of high response, small size-to-power ratio and large driving force. However, inherent nonlinear behaviors and modeling uncertainties are the main obstacles for hydraulic servo system to achieve high tracking performance. To deal with these difficulties, this paper presents a backstepping sliding mode controller to improve the dynamic tracking performance and anti-interference ability. For this purpose, the nonlinear dynamic model is firstly established, where the nonlinear behaviors and modeling uncertainties are lumped as one term. Then, the extended state observer is introduced to estimate the lumped disturbance. The system stability is proved by using the Lyapunov stability theorem. Finally, comparative simulation and experimental are conducted on a hydraulic servo system platform to verify the efficiency of the proposed control scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.