Abstract

The extension of the backstepping-based state observer design is considered for systems governed by parabolic PDEs defined on a higher-dimensional cuboidal spatial domain with the measured output being restricted to a single boundary hyperplane. Thereby, a suitable coordinate and state transformation is employed, which allows for the application of the backstepping method for the determination of a Luenberger-type state observer with observer corrections entering the PDE and the boundary condition. This ensures that the observer error dynamics follows the behavior of a predefined exponentially stable target system. In view of a practical realization of the proposed observer approach, the idealized system output, previously assumed as measurable on the entire boundary hyperplane, is reconstructed from a limited set of optimally located measurements by means of a least squares approximation. The observer error convergence and the applicability of the proposed approach are confirmed analytically and are evaluated in numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.