Abstract
We consider the problem of boundary stabilization and state estimation for a 2×2 system of first-order hyperbolic linear PDEs with spatially varying coefficients. First, we design a full-state feedback law with actuation on only one end of the domain and prove exponential stability of the closed-loop system. Then, we construct a collocated boundary observer which only needs measurements on the controlled end and prove convergence of observer estimates. Both results are combined to obtain a collocated output feedback law. The backstepping method is used to obtain both control and observer kernels. The kernels are the solution of a 4 × 4 system of first-order hyperbolic linear PDEs with spatially varying coefficients of Goursat type, whose well-posedness is shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.