Abstract

A novel variable structure controller based on sliding mode is developed for addressing the trajectory tracking challenge encountered by wheeled mobile robots. Firstly, the trajectory tracking error model under the global coordinate system is established according to the kinematic model of the wheeled mobile robot. Secondly, the novel sliding mode algorithm and backstepping method are introduced to design the motion controller of the system, respectively. Different sliding mode surfaces are formulated to guarantee rapid and stable convergence of the system’s trajectory tracking error to zero. Ultimately, comparative simulation trials validate the controller’s ability to swiftly and consistently follow the reference trajectory. In contrast to traditional controllers, this controller shows rapid convergence, minimal error, and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.