Abstract

Back reflection of short, intense laser pulses at oblique incidence on solid targets is explained with a model where a periodic electron density modulation acts as a diffraction grating. The pump and reflected electromagnetic waves drive through the ponderomotive force the grating and the overall system becomes parametrically unstable. The basic equations governing this system are given. A linearized stability analysis yields the instability growth rate for a homogeneous plasma and the convective gain coefficients for the inhomogeneous case. The results support the feasibility of the suggested mechanism. An absolute instability is predicted to set on at a typical threshold intensity 10<SUP>16</SUP> W/cm<SUP>2</SUP>, laser pulse length 100 fs, and spot size 30 micrometers . The instability is shown to saturate at a level of a few percent, because the higher harmonics in the electron density modulation turn the diffraction more diffuse thus reducing both the sustaining ponderomotive force and the back reflection coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call