Abstract

In this paper, we investigate electron transport and electron scattering in the insulators of the Graphene Base Transistor (GBT) by means of a Monte Carlo transport model. We focus on electron backscattering in the base-collector insulator as the possible root cause of the large experimental base current and small measured common-base current gain (αF) of GBTs. Different GBT structures have been simulated and the impact of the scattering parameters on the base current is analyzed. Simulated backscattering-limited αF values are found to be much higher than available experimental data, suggesting that state-of-the-art technology is still far from being optimized. However, those simulated αF values can be low enough to limit the maximum achievable GBT performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.