Abstract

The working distance and tilt studies helped to clarify the influences of specimen variability when the BSE mode is used in calcified tissue research. This work has shown that the BSEPs of cortical bone may be accurately maintained within 2 percent error over a 10 degree range of tilt, or 300 microns working distance variation. If future bone and implant investigators wish to conduct accurate, quantitative mineral microanalysis in bone, then standard grinding and polishing techniques should be adequate if calibration procedures are developed. The BSEP characteristics of the pure metals make them suitable to be used for calibrating the BSE signal. BSE analysis, with correlated biomechanical studies, will lead us to a better understanding of the relationships between structure, function, and mineral content in bone. On-line BSEP analysis techniques will expand our understanding of the mineralization events in bone which are associated with aging, weightlessness, pharmaceutical therapies, and the presence of biomaterials. The future of the BSE imaging technology and the contributions to be made in understanding the histometry, biomechanics and mineral content of bone as well as bone's response to implant materials has just begun to unfold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call