Abstract

Experimental and theoretical results on image contrast of semiconductor multi-layers in scanning electron microscopy investigation are reported. Two imaging modes have been considered: backscattered electron imaging of bulk specimen and scanning transmission imaging of thinned specimens. The following main results have been reached. The image resolution of the multi-layers is, in both cases, defined by the probe size. The contrast, governed by density and atomic number differences, is affected by the size of the interaction volume in backscattered electron imaging and by the beam broadening in scanning transmission. Operating in the scanning transmission mode, the contrast of bright field images can be easily related to local variation in atomic number and density of the specimen while the dark field image contrast is strongly affected by electron beam energy, detector collection angles and specimen thickness. All these factors are able to produce contrast reversals that are difficult to explain without the support of a suitable simulation code.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.