Abstract
Biaxial mechanical testing is a common method for elucidation of mechanical properties of excised ventricular myocardium, especially in the context of structural remodeling that accompanies heart disease. Current imaging strategies in biaxial testing are based on optical camera imaging of the tissue surface, thus providing no information about the tissue microstructure and limiting strain measurements to two dimensions. Here, these limitations are overcome by replacing the camera with ultrasound imaging in order to measure both transmural fiber orientation and 3D tissue deformation during biaxial testing. Quasi-static biaxial mechanical testing is applied to four samples of excised porcine ventricular myocardium (two left- and two right-ventricular tissues). During testing, a rotational scan of an ultrasound linear array provides data for both backscatter tensor imaging and 3D speckle tracking, from which transmural fiber orientation and tissue deformation are computed, respectively. Ultrasound-derived fiber orientation and tissue strain are validated against histology and camera surface imaging, respectively. Ultrasound-derived fiber angle and tissue strain exhibit good accuracy, with root-mean-square errors of 9.9° and 1.2% strain, respectively. Further investigation into the optimization of backscatter tensor imaging is warranted. Replacing the rotational scan of a linear array with volume imaging with a matrix array will improve the technique. Ultrasound imaging can replace the optical camera measurement during biaxial mechanical testing of ventricular myocardium in order to accurately provide measurements of transmural fiber orientation and tissue strain. In situ knowledge of transmural fiber structure and tissue deformation can enhance the inverse problem used to determine tissue mechanical properties from biaxial testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.