Abstract

Step and stare imaging with staring arrays has become the main approach to realizing wide area coverage and high resolution imagery of potential targets. In this paper, a backscanning step and stare imaging system is described. Compared with traditional step and stare imaging systems, this system features a much higher frame rate by using a small-sized array. In order to meet the staring requirements, a fast steering mirror is employed to provide backscan motion to compensate for the image motion caused by the continuously scanning of the gimbal platform. According to the working principle, the control system is designed to step/stare the line of sight at a high frame rate with a high accuracy. Then a proof-of-concept backscanning step and stare imaging system is established with a CMOS camera. Finally, the modulation transfer function of the imaging system is measured by the slanted-edge method, and a quantitative analysis is made to evaluate the performance of image motion compensation. Experimental results confirm that both high frame rate and image quality improvement can be achieved by adopting this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.