Abstract
We study the gravitational backreaction of the non-abelian gauge field on the gravity dual to a 2+1 p-wave superconductor. We observe that as in the $p+ip$ system a second order phase transition exists between a superconducting and a normal state. Moreover, we conclude that, below the phase transition temperature $T_c$ the lowest free energy is achieved by the p-wave solution. In order to probe the solution, we compute the holographic entanglement entropy. For both $p$ and $p+ip$ systems the entanglement entropy satisfies an area law. For any given entangling surface, the p-wave superconductor has lower entanglement entropy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.