Abstract
Backpropagation is a classic automatic differentiation algorithm computing the gradient of functions specified by a certain class of simple, first-order programs, called computational graphs. It is a fundamental tool in several fields, most notably machine learning, where it is the key for efficiently training (deep) neural networks. Recent years have witnessed the quick growth of a research field called differentiable programming, the aim of which is to express computational graphs more synthetically and modularly by resorting to actual programming languages endowed with control flow operators and higher-order combinators, such as map and fold. In this paper, we extend the backpropagation algorithm to a paradigmatic example of such a programming language: we define a compositional program transformation from the simply-typed lambda-calculus to itself augmented with a notion of linear negation, and prove that this computes the gradient of the source program with the same efficiency as first-order backpropagation. The transformation is completely effect-free and thus provides a purely logical understanding of the dynamics of backpropagation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.