Abstract
The weather has a substantial impact on the ability to live organisms to carry out everyday activities, particularly outside activities. Weather data is helpful in various fields, including marine, aviation, and agriculture. The maritime domain is beneficial for establishing the optimal navigation time for a fisherman, the aviation domain helps reduce climate-related mishaps, and the agriculture sector uses weather information to develop harvest season models for agricultural products. Indonesia is a tropical nation with heavy precipitation. Utilized for various objectives, rainfall forecasting models seek the utmost precision, particularly in specialized areas such as flood control. This study is based on two techniques: the Radial Basis Function Neural Network (RBFNN) and Backpropagation Neural Network (BPNN) techniques using multiple training functions. The RBFNN approach yields less accurate results for predicting precipitation, but the multi-practice BPNN method yields more accurate results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.