Abstract

Offshore tidal sand waves on the sandy bed of shallow continental shelf seas are more three-dimensional (3D) in some places than others, where 3D refers to a pattern that shows variations in three spatial directions. These sand waves often display meandering, splitting, or merging crestlines. The degree of three-dimensionality seems to vary especially when large-scale bedforms, such as tidal sand banks, are present underneath the sand waves. Understanding this behavior is important for offshore activities, such as offshore wind farm construction or the maintenance of navigation channels. In this study, the degree of three-dimensionality of sand waves at five sites in the North Sea is quantified with a new measure. Results show that tidal sand waves on top of tidal sand banks are more two-dimensional (2D) than those on bank slopes or in open areas. Numerical simulations performed with a new long-term sand wave model support these differences in sand wave patterns. The primary cause of these differences is attributed to the deflection of tidal flow over a sand bank, which causes sand wave crests to be more aligned with the bank at its top than at its slopes. It is subsequently made plausible that the different patterns result from the competition between two known mechanisms. These mechanisms are nonlinear interactions between sand waves themselves (SW-SW interactions) and nonlinear interactions between sand banks and sand waves (SB-SW interactions). On bank tops, SB-SW interactions favor a 2D pattern, while SW-SW interactions, which produce a 3D pattern elsewhere, are less effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.