Abstract

The mutation process continually produces new deleterious variants at sites throughout the genome, which are then mostly eliminated by selection. This causes a reduction in variability at linked neutral or nearly neutral sites, as well as distortions of the genealogies of samples of alleles from a population. In regions of the genome where recombination is frequent, the effects of selection against deleterious mutations on variability and evolution at linked sites can be predicted under the assumption that most deleterious mutations have such large effects that their behavior in the population is effectively deterministic-this is background selection in the strict sense. But in genomic regions with little or no recombination, such as the Y chromosome, large departures from the predictions using deterministic models may occur, because of interference between different sites under selection. Evidence from Drosophila and human populations is discussed, which suggests that these processes play a major role in shaping patterns of DNA sequence variation and evolution, including the relative levels of variation on X chromosomes and autosomes, and the highly reduced variability seen in regions that lack crossing over.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.