Abstract

We report on the x-ray background rate measured with transition-edge sensors (TES) micro-calorimeters under frequency-domain multiplexing (FDM) readout as a possible technology for future experiments aiming at a direct detection of axion-like particles. Future axion helioscopes will make use of large magnets to convert axions into photons in the keV range and x-ray detectors to observe them. To achieve this, a detector array with high spectral performance and extremely low background is necessary. TES are single-photon, non-dispersive, high-resolution micro-calorimeters and represent a possible candidate for this application. We have been developing x-ray TES micro-calorimeters and an FDM readout technology in the framework of the space-borne x-ray astronomical observatories. We show that the current generation of our detectors is already a promising technology for a possible axion search experiment, having measured an x-ray background rate of 2.2(2) × 10−4 cm−2 s−1 keV−1 with a cryogenic demonstrator not optimized for this specific application. We then make a prospect to further improve the background rate down to the required value (<10−7 cm−2 s−1 keV−1) for an axion-search experiment, identifying no fundamental limits to reach such a level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.