Abstract
Background modeling of video frame sequences is a prerequisite for computer vision applications. Robust principal component analysis(RPCA), which aims to recover low rank matrix in applications of data mining and machine learning, has shown improved background modeling performance. Unfortunately, The traditional RPCA method considers the batch recovery of low rank matrix of all samples, which leads to higher storage cost. This paper proposes a novel online motion-aware RPCA algorithm, named OM-RPCAT, which adopt truncated nuclear norm regularization as an approximation method for of low rank constraint. And then, Two methods are employed to obtain the motion estimation matrix, the optical flow and the frame selection, which are merged into the data items to separate the foreground and background. Finally, an efficient alternating optimization algorithm is designed in an online manner. Experimental evaluations of challenging sequences demonstrate promising results over state-of-the-art methods in online application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.