Abstract
The study of the ultra-high energy cosmic rays, neutrinos and gamma rays is one of the most important challenges in astrophysics. The low fluxes of these particles do not allow one to detect them directly. The detection is performed by the measuring of the air-showers produced by the primary particles in the Earth's atmosphere. A radio detection of ultra-high energy air-showers is a cost-effective technique that provides a precise reconstruction of the parameters of primary particle and almost full duty cycle in comparison with other methods. The main challenge of the modern radio detectors is the development of efficient self-trigger technology, resistant to high-level background and radio frequency interference. Most of the modern radio detectors receive trigger generated by either particle or optical detectors. The development of the self trigger for the radio detector will significantly simplify the operation of existing instruments and allow one to access the main advantages of the radio method as well as open the way to the construction of the next generation of large-scale radio detectors. In the present work we discuss our progress in the solution of this problem, particularly the classification of broadband pulses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.