Abstract
One of the main limitations to current wave data assimilation systems is the lack of an accurate representation of the structure of the background errors. One method that may be used to determine background errors is the observational method of Hollingsworth and Lönnberg [1986]. This method considers correlations of the differences between observations and the background. For the case of Significant Wave Height (SWH), potential observations come from satellite altimeters. In this paper, correlations of the differences between modeled SWH and bias‐corrected ERS‐2 data are calculated. The irregular sampling pattern of the altimeter is accounted for by adjusting the correlation length scales according to latitude and the calculated length scale. The results show that the length scale of the background errors varies significantly over the globe, with the largest scales at low latitudes and shortest scales at high latitudes. Very little seasonal or year‐to‐year variability in the correlation length scales is detected. Conversely, the magnitude of the background error variance is found to have considerable seasonal and year‐to‐year variability. By separating the altimeter ground tracks into ascending and descending tracks, it is possible to examine, to a limited extent, whether any anisotropy exists in the background errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.