Abstract

Neutrinoless double beta decays in liquid xenon produce a significant amount of Cherenkov light, with a photon number and angular distribution that distinguishes these events from common backgrounds. A GEANT4 simulation was used to simulate Cherenkov photon production and measurement in a liquid xenon detector and a multilayer perceptron was used to analyze the resulting distributions to classify events based on their Cherenkov photons. Our results show that a modest improvement in the sensitivity of neutrinoless double beta decay searches is possible using this technique, but the kinematics of the neutrinoless double beta decay and electron scattering in liquid xenon substantially limit this approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call