Abstract

1. Aspartate-isolated photoresponses of the red rods to flashes and steps of light have been recorded, both in the presence of and without background lights of varying strength. 2. The results are interpreted in terms of a model of rod outer segment adaptation, where the three model parameters correspond to the adaptation processes associated with the transmitter release, the transmitter background concentration and the plasma membrane leakage, respectively. 3. The stimulus-response function deviated somewhat from the Michaelis equation U/Umax=I/(I + IH). During light-adaptation the operating curve, the stimulus-response function plotted in a log-log diagram, retained approximately its shape while moving strongly to the right along the log intensity axis and to a lesser degree downwards (Umax-decrease). 4. The movement of the operating curve was such that the rods approximately obeyed Weber's law. In the cases of flash and step of light stimuli the movement of the operating curve was about the same. 5. When a moderate background light was turned on a large decrease of sensitivity was first observed. During a period 0-5-1 min the sensitivity increased towards the stationary value. After extinguishing the background light the dark sensitivity returned in 0-5-1 min and then a period of hypersensitivity lasting typically 1 min was observed. 6. The experimental results, as interpreted according to the model, indicate that light-adaptation decreases q, the number of transmitter molecules released by one bleached rhodopsin molecule. 7. There is probably an adaptation process also in the rod inner segment, which increases the sensitivty of the rod to transient stimuli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call