Abstract

A computational scheme for fitting smoothing spline ANOVA models to large data sets with a (near) tensor product design is proposed. Such data sets are common in spatial-temporal analyses. The proposed scheme uses the backfitting algorithm to take advantage of the tensor product design to save both computational memory and time. Several ways to further speed up the backfitting algorithm, such as collapsing component functions and successive over-relaxation, are discussed. An iterative imputation procedure is used to handle the cases of near tensor product designs. An application to a global historical surface air temperature data set, which motivated this work, is used to illustrate the scheme proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.