Abstract
Federated learning (FL) is an approach within the realm of machine learning (ML) that allows the use of distributed data without compromising personal privacy. In FL, it becomes evident that the training data among participants frequently exhibit heterogeneous distribution characteristics. This inherent heterogeneity poses a substantial challenge for the orchestration server as it strives to assess the reliability of each local model update. Due to this challenge, FL becomes susceptible to various potential risks, with the ominous backdoor attack standing out as one of the most menacing threats. Backdoor attacks involve the insertion of malicious functionality into a targeted model through poisoned updates from malicious clients. These attacks can cause the global model to misbehave on specific inputs while appearing normal in other instances. Although the backdoor attacks received significant attention for their potential impact on practical deep learning applications, their exploration within the realm of FL remains limited. This survey seeks to address this gap by offering an all-encompassing examination of prevailing backdoor attack tactics and defenses in the context of FL. We include an exhaustive analysis of diverse approaches to provide a comprehensive understanding of this intricate landscape. Furthermore, we also discuss the challenges and potential future directions for attacks and defenses in the context of FL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.