Abstract
Applicating third-party data and models has become a new paradigm for language modeling in NLP, which also introduces some potential security vulnerabilities because attackers can manipulate the training process and data source. In this case, backdoor attacks can induce the model to exhibit expected behaviors through specific triggers and have little inferior influence on primitive tasks. Hence, it could have dire consequences, especially considering that the backdoor attack surfaces are broad. However, there is still no systematic and comprehensive review to reflect the security challenges, attacker's capabilities, and purposes according to the attack surface. Moreover, there is a shortage of analysis and comparison of the diverse emerging backdoor countermeasures in this context. In this paper, we conduct a timely review of backdoor attacks and countermeasures to sound the red alarm for the NLP security community. According to the affected stage of the machine learning pipeline, the attack surfaces are recognized to be wide and then formalized into three categorizations: attacking pre-trained model with fine-tuning (APMF) or parameter-efficient tuning (APMP), and attacking final model with training (AFMT). Thus, attacks under each categorization are combed. The countermeasures are categorized into two general classes: sample inspection and model inspection. Overall, the research on the defense side is far behind the attack side, and there is no single defense that can prevent all types of backdoor attacks. An attacker can intelligently bypass existing defenses with a more invisible attack. Drawing the insights from the systematic review, we also present crucial areas for future research on the backdoor, such as empirical security evaluations on large language models, and in particular, more efficient and practical countermeasures are solicited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.