Abstract
The performance of n-type Si back-contact back-junction (BC-BJ) solar cells under illumination with high energy ultraviolet (UV) photons was investigated. The impact of the phosphorus doped front surface field (FSF) layer on the stability of the front surface passivation under UV illumination was investigated. Lifetime samples and solar cells without the front surface field showed a significant performance reduction when exposed to ultraviolet light. The surface saturation current density ( J 0e) increased from 48 to 446 fA/cm 2 after the UV exposure. At the same time the efficiency of the BC-BJ solar cells without the FSF diffusion reduced from 19.8% to 14.3%. In contrast to the lifetime samples and solar cells without the FSF diffusion, the tested n +nn + structures and the BC-BJ solar cells with applied FSF diffusion profiles were significantly more stable under UV exposure, i.e. J 0e increased only by a factor of 25% and the efficiency of these cells decreased only 0.3% abs by the UV illumination. Finally it was shown that the performance of the UV-degraded solar cells without FSF could be improved during a forming gas anneal (FGA). Due to application of FGA the efficiency almost fully recovered from 14.3% to 19.6%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.