Abstract
We study the ground-state spatial heterogeneities of the Edwards-Anderson spin-glass model with both bimodal and Gaussian bond distributions. We characterize these heterogeneities by using a general definition of bond rigidity, which allows us to classify the bonds of the system into two sets, the backbone and its complement, with very different properties. This generalizes to continuous distributions of bonds the well-known definition of a backbone for discrete bond distributions. By extensive numerical simulations we find that the topological structure of the backbone for a given lattice dimensionality is very similar for both discrete and continuous bond distributions. We then analyze how these heterogeneities influence the equilibrium properties at finite temperature and we discuss the possibility that a suitable backbone picture can be relevant to describe spin-glass phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.