Abstract

Reinforced concrete block shear walls (RCBSWs)have been used as an effective seismic force resisting system in low- and medium-rise buildings for many decades. However, attributed to their complex nonlinear behavior and the composite nature of their constituent materials, accurate prediction of their seismic performance, relying solely on mechanics, has been challenging. This study adopts multi-gene genetic programming (MGGP)— a class of bio-inspired artificial intelligence, to uncover the complexity of RCBSW behaviors and develop simplified procedures for predicting the full backbone curve of flexure-dominated RCBSWs under cyclic loading. A piecewise linear backbone curve was developed using five secant stiffness expressions associated with: cracking; yielding; 80% ultimate; ultimate; and 20% strength degradation (i.e., post-peak stage) derived through mechanics-controlled MGGP. Based on the experimental results of large-scale cyclically loaded fully-grouted RCBSWs, compiled from previously reported studies, a variable selection procedure was performed to identify the most influential variable subset governing wall behaviors. Subsequently, the MGGP stiffness expressions were trained and tested, and their accuracy was compared to that of existing models employing various statistical measures. In addition, the predictability of the developed backbone model was assessed at the system-level against experimental results of two two-story buildings available in the literature. This study demonstrates the power of the MGGP approach in addressing the complexity of the cyclic behavior of RCBSWs at both component- and system-level—offering an efficient prediction tool that can be adopted by relevant seismic design standards pertaining to RCBSW buildings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call