Abstract
Escherichia coli thioesterase/protease I (TEP-I) is a member of a novel subclass of the lipolytic enzymes with a distinctive GDSLS motif. In addition to possessing thioesterase and protease activities, TEP-I also exhibits arylesterase activity. We have determined the 15N nuclear magnetic spin relaxation rates, R1 and R2, and the steady state 1H-15N heteronuclear Overhauser effect, measured at both 11.74 T and 14.09 T, of (u-15N) TEP-I. These data were analyzed using model-free formalism (with axially symmetric rotational diffusion anisotropy) to extract the backbone dynamics of TEP-I. The results reveal that the core structure of the central β-sheet and the long α-helices are rigid, while the binding pocket appears to be rather flexible. The rigid core serves as a scaffold to anchor the essential loops, which form the binding pocket. The most flexible residues display large amplitude fast (ps/ns time-scale) motion and lie on one stripe whose orientation is presumed to be the ligand-binding orientation. We also detected the presence of several residues displaying slow (μs/ms time-scale) conformational exchanging processes. These residues lie around the binding pocket and are oriented perpendicularly to the orientation of the flexible stripe. Two of the putative catalytic triads, Ser10 and His157, and their neighbors show motion on the μs/ms time-scale, suggesting that their slow motion may have a role in catalysis, in addition to their possible roles in ligand binding. The presence of a flexible substrate-binding pocket may also facilitate binding to a wide range of substrates and confer the versatile functional property of this protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.