Abstract
The slowly relaxing local structure (SRLS) approach, developed for NMR spin relaxation analysis in proteins, is applied herein to amide ¹⁵N relaxation in deoxy and carbonmonoxy hemoglobin. Experimental data including ¹⁵N T₁, T₂ and ¹⁵N-{¹H} NOE, acquired at 11.7 and 14.1 T, and 29 and 34 °C, are analyzed. The restricted local motion of the N-H bond is described in terms of the principal value (S(0)(2)) and orientation (β(D)) of an axial local ordering tensor, S, and the principal values (R(||)(L) and R(⊥)(L)) and orientation (β(O)) of an axial local diffusion tensor, R(L). The parameters c₀² (the potential coefficient in terms of which S(0)(2) is defined), R(||)(L), β(D), and β(O) are determined by data fitting; R(⊥)(L) is set equal to the global motional rate, R(C), found previously to be (5.2-5.8) × 10⁶ 1/s in the temperature range investigated. The principal axis of S is (nearly) parallel to the C(i-1)(α)-C(i)(α) axis; when the two axes are parallel, β(D) = -101.3° (in the frame used). The principal axis of R(L) is (nearly) parallel to the N-H bond; when the two axes are parallel, β(O) = -101.3°. For "rigid" N-H bonds located in secondary structure elements the best-fit parameters are S(0)(2) = 0.88-0.95 (corresponding to local potentials of 8.6-19.9 k(B)T), R(||)(L) = 10⁹-10¹⁰ 1/s, β(D) = -101.3° ± 2.0°, and β(O) = -101.3° ± 4°. For flexible N-H bonds located in loops the best-fit values are S(0)(2) = 0.75-0.80 (corresponding to local potentials of 4.5-5.5 k(B)T), R(||)(L) = (1.0-6.3) × 10⁸ 1/s, β(D) = -101.3° ± 4.0°, and β(O) = -101.3° ± 10°. These results are important in view of their physical clarity, inherent potential for further interpretation, consistency, and new qualitative insights provided (vide infra).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.