Abstract

We discuss the construction of a simple, off-lattice model protein with a comparatively detailed representation of the protein backbone, and use it to address some general aspects of the folding kinetics of a small helical protein and two peptide fragments. The model makes use of an associative memory hamiltonian to smoothly interpolate between the limits of a native contact only, or Gō, potential and a statistical pair potential derived from a database of known structures. We have observed qualitatively different behavior in these two limits. In the Gō limit, we see apparently barrier-less folding. As we increase the roughness of the model energy landscape, we can observe the emergence of the characteristic activated temperature dependence previously seen in lattice studies and analytical theories. We are also able to study the dependence of the folding kinetics on local interactions such as hydrogen bonds, and we discuss the implications of these results for the formation of secondary structure at intermediate stages of the folding reaction. Proteins 1999;34:281–294. © 1999 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.