Abstract

The backbone resonance assignments of an engineered splicing-inactive mini-RecA intein based on triple resonance experiments with [(13)C,(15)N]-labeled protein are reported. The construct contains inactivating mutations specifically designed to retain most catalytic residues, especially those that are potentially metal-coordinating. The assignments are essential for protein structure determination of a precursor with an active N-terminal catalytic cysteine and for investigation of the atomic details of splicing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call