Abstract

The bacterium Staphylococcus aureus produces an array of anti-inflammatory molecules that prevent the innate immune system from recognizing it as a pathogen and clearing it from the host. In the acute phase of inflammation, our immune system relies on neutrophils to clear invading bacteria. Recently, novel classes of secreted proteins from S. aureus, including the Extracellular Adherence Protein (EAP) family (Stapels et al., Proc Natl Acad Sci USA 111:13187-13192, 2014) and the Staphylococcal Peroxidase Inhibitor (SPIN), (unpublished work) have been identified as highly selective inhibitors acting on Neutrophil Serine Proteases (NSPs) and myeloperoxidase (MPO) respectively. SPIN is a protein found only in Staphylococci, with no sequence homology to any known proteins. Solution NMR structural studies of SPIN are therefore expected to provide a deeper understanding of its interaction with MPO. In this study, we report the backbone and side-chain 1H, 15N, and 13C resonance assignments of SPIN. Furthermore, using the chemical shifts of these resonances, we predicted the secondary structure of SPIN in solution via the TALOS-N server. The assignment data has been deposited in the BMRB data bank under Accession No. 27069.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call