Abstract
We present a Monte Carlo study of the backbone and the shortest-path exponents of the two-dimensional Q-state Potts model in the Fortuin-Kasteleyn bond representation. We first use cluster algorithms to simulate the critical Potts model on the square lattice and obtain the backbone exponents d_{B}=1.7320(3) and 1.794(2) for Q=2,3, respectively. However, for large Q, the study suffers from serious critical slowing down and slowly converging finite-size corrections. To overcome these difficulties, we consider the O(n) loop model on the honeycomb lattice in the densely packed phase, which is regarded to correspond to the critical Potts model with Q=n^{2}. With a highly efficient cluster algorithm, we determine from domains enclosed by the loops d_{B}=1.64339(5),1.73227(8),1.7938(3),1.8384(5),1.8753(6) for Q=1,2,3,2+sqrt[3],4, respectively, and d_{min}=1.0945(2),1.0675(3),1.0475(3),1.0322(4) for Q=2,3,2+sqrt[3],4, respectively. Our estimates significantly improve over the existing results for both d_{B} and d_{min}. Finally, by studying finite-size corrections in backbone-related quantities, we conjecture an exact formula as a function of n for the leading correction exponent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.