Abstract

Single stranded DNA-binding proteins (SSBs) are essential for the maintenance of genome integrity and are required in in all known cellular organisms. Over the last 10 years, the role of two new human SSBs, hSSB1 (NABP2/OBFC2B) and hSSB2 (NABP1/OBFC2A), has been described and characterised in various important DNA repair processes. Both these proteins are made up of a conserved oligonucleotide-binding (OB) fold that is responsible for ssDNA recognition as well a unique flexible carboxy-terminal extension involved in protein-protein interactions. Due to their similar domain organisation, hSSB1 and hSSB2 have been found to display some overlapping functions. However, several studies have also revealed cell- and tissue-specific roles for these two proteins, most likely due to small but significant differences in the protein sequence of the OB domains. While the molecular details of ssDNA binding by hSSB1 has been studied extensively, comparatively little is known about hSSB2. In this study, we use NMR solution-state backbone resonance assignments of the OB domain of hSSB2 to map the ssDNA interaction interface. Our data reveal that ssDNA binding by hSSB2 is driven by four key aromatic residues in analogy to hSSB1, however, some significant differences in the chemical shift perturbations are observed, reflecting differences in ssDNA recognition. Future studies will aim at determining the structural basis of these differences and thus help to gain a more comprehensive understanding of the functional divergences that these novel hSSBs display in the context of genome maintenance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call