Abstract

The Manus Basin in the eastern Bismarck Sea is a fastopening backarc basin behind the New Britain arc-trench system. Within the basin, motion between the Pacific and Bismarck plates about a pole located at 11° S, 145° E, occurs along three major leftlateral transform faults and a variety of extensional segments. We interpret SeaMARC II sidescan and other geophysical data to show that a Brunhes age plate reorganization created new extensional boundaries and a microplate between the NW-trending Willaumez, Djaul, and Weitin transforms. Two linked spreading segments formed in backarc basin crust between the Willaumez and Djaul transforms: the ESE-trending extensional transform zone (ETZ) in the west and the Manus spreading center (MSC) in the east. Positively magnetized crust on the MSC forms a wedge varying in width from 72 km at its southwest end to zero at its northeast tip, with corresponding Brunhes spreading rates varying from 92 mm/yr to zero. The MSC forms the northwestern boundary of the 100 km-scale Manus microplate and opens at 51°/m.y. about a pole near its apex at 3°02′S, 150°32′E. Opposite the MSC, bordering the arc margin of New Britain, the microplate is bound by a zone of broadly distributed strike slip motion, extension, and volcanism. Within this area, the Southern Rifts contain a series of grabens partially floored by lava flows. Left-lateral motion between the Pacific and Bismarck plates appears to drive the counterclockwise pivoting motion of the Manus microplate and the complementary wedge-like opening of the MSC and the Southern Rifts. The pivoting motion of the microplate has resulted in compressional areas along its NE and SW boundaries with the Pacific and Bismarck plates respectively. East of the microplate, between the Djaul and Weitin transforms and within the arc margin of New Ireland, another zone of broad extension referred to as the Southeast Rifts takes up opening in a pull-apart basin. There, en echelon volcanic ridges may be the precursors of spreading segments, but erupted lavas include calcalkaline volcanics. Kinematic modeling and marine geophysical observations indicate that the responses to similar amounts of extension in the eastern Manus Basin have varied as a function of the different types of pre-existing crust: arc crust tectonically stretched over a broad area whereas backarc crust underwent relatively little stretching before accommodating extension by seafloor spreading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call