Abstract

Donor-acceptor dyads represent a practical approach to tuning the photophysical properties of linear conjugated polymers in materials chemistry. Depending on the absorption wavelength, the acceptor and donor roles can be interchanged, and as such, the directionality of the energy transfer can be controlled. Herein, nonadiabatic excited state molecular dynamics simulations have been performed in an arylethylene-linked perylene-chlorin dyad. After an initial photoexcitation at the Soret band of chlorin, we observe an ultrafast sequential electronic relaxation to the lowest excited state. This process is accomplished through an efficient round-trip chlorin-to-perylene-to-chlorin energy transfer. It is characterized by successive intermittent localized and delocalized vibronic dynamics. Nonradiative relaxation takes place mainly through energy transfer events with perylene acting as a "heat sink" through which the nonradiative relaxation is efficiently funneled, and the excess energy is dispersed in a larger space of vibrational degrees of freedom. Thus, our findings suggest the use of donor-acceptor dyads as a useful strategy when one needs to deactivate an electronic excitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.