Abstract

Predicting the mobility and delineating the extent of geophysical flows remains a challenge for engineers. The accuracy of predictions hinges on the reliability of input parameters of runout models. Currently, limited field data for landslide case histories are available for benchmarking the performance of runout models. Key rheological parameters, such as the equivalent internal friction angle, cannot be measured directly using laboratory experiments and must instead be determined through back-analyses. A series of dynamic back-analyses was carried out for notable landslide case histories in Hong Kong, accounting for the effects of pore-water pressure on the equivalent internal friction angle, using a three-dimensional finite-element mobility model. The recorded and simulated run-out distances, as well as lateral spreading, were compared. Results reveal that the back-analysed equivalent internal friction angles resulting from open-hillslope failures and from channelized geophysical flows range from 25° to 30° and 15° to 20°, respectively. This is attributed to incised geophysical flow channels having an elevated water head and higher degree of saturation compared to open-hillside slope surfaces, wherein the induced elevated pore-water pressure profoundly lowers the equivalent internal friction angle. The back-calculated values may be useful for finite-element-based design of mitigation measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.