Abstract

Abstract We describe the experimental observation and theoretical interpretation of a squeezing effect which occurs through the coupling of two light beams in a three-level atomic system. The origin of this effect can be attributed to the transfer of the intensity fluctuations of one beam to the phase fluctuations of the other one, followed by an optical feedback onto the intensity of the initial beam. The first step of the information transfer is similar to the one which occurs in a quantum non-demolition (QND) measurement of the intensity. The feedback effect is obtained through mixing of the phase and intensity quadratures, due to the detuning of the optical cavity which contains the nonlinear medium. Therefore the information obtained by the QND measurement is used to correct the intensity fluctuations of the signal beam by a build-in mechanism, which does not require any use of external electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.