Abstract

We present a scheme for generating robust and persistent entanglement between qubits that do not interact and that are separated by a long and lossy transmission channel, using Markovian reservoir engineering. The proposal uses only the correlated decay into the common channel of remotely separated, driven single-photon qubit transitions. This simple scheme is generic and applicable to various experimental implementations, including circuit and cavity QED, with little experimental overhead compared with methods requiring dynamic control, initialization, measurement, or feedback. In addition to avoiding these inefficiencies, the simple protocol is highly robust against noise, miscalibration, and loss in the channel. We find high quality solutions over a wide range of parameters and show that the optimal strategy reflects a transition from ballistic to diffusive photon transmission, going from symmetrically and coherently driving a common steady state to asymmetrically absorbing photons that are emitted from one qubit by the second. Detailed analysis of the role of the transmission channel shows that allowing bi-directional decay drastically increases indistinguishability and thereby quadratically suppresses infidelity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.