Abstract
Circular RNAs (circRNAs) have been shown to be pivotal regulators in various human diseases by participating in gene splicing, acting as microRNA (miRNA) sponges, interacting with RNA-binding proteins (RBPs), and translating into short peptides. As the back-splicing products of pre-mRNAs, many circRNAs can modulate the expression of their host genes through transcriptional, post-transcriptional, translational, and post-translational control via interaction with other molecules. This review provides a detailed summary of these regulatory mechanisms based on the class of molecules that they interact with, which encompass DNA, mRNA, miRNA, and RBPs. The co-expression of circRNAs with their parental gene productions (including linear counterparts and proteins) provides potential diagnostic biomarkers for multiple diseases. Meanwhile, the different regulatory mechanisms by which circRNAs act on their host genes via interaction with other molecules constitute complex regulatory networks, which also provide noticeable clues for therapeutic strategies against diseases. Future research should explore whether these proven mechanisms can play a similar role in other types of disease and clarify further details about the cross-talk between circRNAs and host genes. In addition, the regulatory relationship between circRNAs and their host genes in circRNA circularization, degradation, and cellular localization should receive further attention.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.