Abstract

Crop domestication has been embraced as a model system to study the genetics of plant evolution. Yet, the role of the environment, including biotic forces such as microbial and insect communities, in contributing to crop phenotypes under domestication and diversification has been poorly explored. In particular, there has been limited progress in understanding how human selection, agricultural cultivation (soil disturbance, fertilization, and irrigation), and biotic forces act as selective pressures on crop phenotypes. For example, geographically-structured pathogenic, pestiferous, and mutualistic interactions with crop plants have likely given rise to landraces that interact differently with local microbial and insect communities. In order to understand the adaptive role of crop traits, we argue that more studies should be conducted in the geographic centers of origin to test hypotheses on how abiotic, biotic, and human selective forces have shaped the phenotypes of domesticated plants during crop domestication and subsequent diversification into landraces. In these centers of origin, locally endemic species associated with wild ancestors have likely contributed to the selection on plant phenotypes. We address a range of questions that can only be studied in the geographic center of crop origin, placing emphasis on Mesoamerican polyculture systems, and highlight the significance of in situ studies for increasing the sustainability of modern agricultural systems.

Highlights

  • The domestication of crop plants has fundamentally altered the relationship between humans and their environment (Larson et al, 2014)

  • Wild ancestors of crop plants evolved in association with a broad assemblage of microbes and insects, with which they engaged in a range of pathogenic, In Situ Studies in Crop Diversification predatory, commensal, and mutualistic interactions (Chen et al, 2013; Huang et al, 2016; Perez-Jaramillo et al, 2016)

  • We conceptually address two questions that could deepen our understanding of crop evolution and local adaptation: (1) To what extent are crop plants locally adapted? and (2) What are the relative roles of human selection, human-mediated migration, the local abiotic environment, endemic biotic communities, and cultivation practices in the diversification of crops into landraces? We describe polyculture systems in Mesoamerica as a suitable model in which these questions could be pursued

Read more

Summary

Introduction

The domestication of crop plants has fundamentally altered the relationship between humans and their environment (Larson et al, 2014). While the genetics of crops domestication has been widely studied for some common plant species (Darwin, 1868; Evans, 1993; Smartt and Simmonds, 1995; Ladizinsky, 1998; Hancock, 2012), the role of ecological interaction within centers of origin in contributing crop phenotypic diversity has been overlooked (Chen et al, 2015; Perez-Jaramillo et al, 2016). In situ field studies documenting variation of ecological interactions are important to determine the extent to which landrace phenotypes respond to local adaptation and artificial selection.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.