Abstract

A growing number of studies and case series point to a dark side of immune checkpoint inhibitors, as they may cause rapid tumor growth with potentially deleterious effects. The pathophysiological mechanism of hyper-progressive disease (HPD) is still unknown; in addition, there are no reliable predictive biomarkers that facilitate the process of patient selection for immunomodulatory antibody-based therapy. The proposed model attempts to reveal the mechanism of such paradoxical response, in a subset of patients receiving anti-PD1/PD-L1 immunotherapy, depending on the biomechanistic properties of the crystal structure of PD-1 protein. PD-1 can exhibit a signaling pattern depending on mechanotransduction upon the formation of PD-1/monoclonal antibody (mAb)/Fc-gamma receptor (Fc-γR) axes resulting from the interaction between PD-1/mAb complex, on the surface of tumor-specific T-cells, and Fc-γR-bearing tumor-associated macrophages (TAMs) within the tumor microenvironment. The generated mechanical force activates ITIM and ITSM on the cytoplasmic endodomain of the PD-1 receptor, leading to suppression of the effector function of tumor-specific T-cells which effectively unleashes cancer cells from the cytotoxic barrier and causes HPD in affected patients. This model provides clues about why patients receiving anti-PD1/PD-L1 mAbs are more prone to develop HPD as well as the variability of the ICIs response among treated patients. Additionally, it features the effect of specific immunophenotypic dynamics, such as TAM infiltration, on the final outcome of antibody-based immunotherapy and gives new insights for designing next-generation immunomodulatory interventions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call