Abstract
We compute the back-to-back dijet cross section in deep inelastic scattering at small x to next-to-leading order (NLO) in the color glass condensate effective field theory. Our result can be factorized into a convolution of the Weizsäcker-Williams gluon transverse-momentum-dependent distribution function (WW gluon TMD) with a universal soft factor and an NLO coefficient function. The soft factor includes both double and single logarithms in the ratio of the relative transverse momentum P_{⊥} of the dijet pair to the dijet momentum imbalance q_{⊥}; its renormalization group (RG) evolution is resummed into the Sudakov factor. Likewise, the WW TMD obeys a nonlinear RG equation in x that is kinematically constrained to satisfy both the lifetime and rapidity ordering of the projectile. Exact analytical expressions are obtained for the NLO coefficient function of transversely and longitudinally polarized photons. Our results allow for the first quantitative separation of the dynamics of Sudakov suppression from that of gluon saturation. They can be extended to other final states and provide a framework for precision tests of novel QCD many-body dynamics at the Electron-Ion Collider.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.