Abstract

As thin-film and silicon solar technologies mature, questions emerge about the upper bounds of thin-film solar performance and realistic experimental paths to reach them. Directions include increasing absorber hole density and bulk lifetime, improving the junction interface, reducing back-surface recombination, and implementing a back-surface electron reflector. Textbook solutions of idealized p-n junctions create a powerful conceptualization of solar cells as predominantly minority-carrier-driven devices. We demonstrate that thin films are distinct, and models often fail to capture the important role of majority-carrier lifetime, leading to contradictions with lifetime measurements and overestimates of potential device improvement from back-surface passivation and/or reflectors. Furthermore, we identify methods to probe majority-carrier lifetime and re-examine the degree to which back-surface passivation and electron reflectors can increase efficiency for a range of common thin-film interface and absorber properties, using current and emerging CdTe technology as an example. Results indicate that a practical approach is to focus first on improving front-interface recombination velocity and the absorber properties, and then on implementing the back-surface passivation or reflector, which can ultimately allow thin-film solar technology to reach 28% efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call