Abstract

Given the prominent success of the Ga gradient in CuIn1-xGaxSe2 (CIGSe) solar cells, Ge gradient implementation is a promising way to boost Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. However, Ge-graded CZTSSe solar cells only possess a low efficiency of 9.2%, far from that of Ge-incorporated CZTSSe without a gradient (12.3%). Herein, we demonstrated a shallow Ge gradient CZTSe solar cell with an improved efficiency over 10%. The Ge gradient was achieved through a GeSe2-Se coselenization process, where GeSe2 acts as a low-temperature fluxing agent to assist crystallization and induce Ge transport toward the back interface. The relieved band tails and improved junction quality, leading to a better carrier separation, were found to take a primary responsibility for device improvement. These results highlight a remarkable breakthrough for Ge-graded CZTSe solar cells and offer a promising way to develop Ge-involved solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.